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GCSE (1-9)

Proof

Instructions

» Use black ink or ball-point pen.

» Answer all questions.

» Answer the questions in the spaces provided

— there may be more space than you need.

» Diagrams are NOT accurately drawn, unless otherwise indicated.
* You must show all your working out.

Information

* The marks for each question are shown in brackets
— use this as a guide as to how much time to spend on each question.

Advice

» Read each question carefully before you start to answer it.
» Keep an eye on the time.

* Try to answer every question.

» Check your answers if you have time at the end
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1  Prove algebraically that the sum of any two consecutive integers is always an odd number.
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(Total for question 1 is 2 marks)

2 Prove algebraically that the sum of any three consecutive even integers is always a multiple of 6.
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(Total for question 2 is 2 marks)



3 Prove that (3n + 1)’ — (3n — 1)’ is always a multiple of 12, for all positive integer values of n.
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(Total for question 3 is 2 marks)

4 nisan integer.
Prove algebraically that the sum of n(rn +1) and »+ 1 is always a square number.
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___(Total for question 4 is 2 marks)



5 Prove that (2n + 3)*— (2n — 3)’ is always a multiple of 12, for all positive integer values of n.
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 (Total for question 5 is 2 marks)

6 nis an integer.
Prove algebraically that the sum of (n+2)(n+ 1) and n+ 2 is always a square number.
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(Total for question 6 is 2 marks)



7 Prove that the sum of 3 consecutive odd numbers is always a multiple of 3.
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___(Total for question 7 is 2 marks)

8 Prove that the sum of 3 consecutive even numbers is always a multiple of 6.
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(Total for question 8 is 2 marks)



9 Prove algebraically that the sum of the squares of any 2 even positive integers is always a multiple of 4.
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(Total for question 9 is 2 marks)

- 10 Prove algebraically that the sum of the squares of any 2 odd positive integers is always even.

p—

T

(an))z—} (2m +1)
(2a+1)(2021) 7 (20 11)(2m+ ()
bp™+ 2at 20 | Flntr Imdn

Ua® + e+ w7 Gm 4 7

2(ea 1 on v 2w T2 )

e ——

__(Total for question 10 is 2 marks)



11  Prove that the sum of the squares of any two consecutive integers is always an odd number.
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_ (Total for question 11 is 3 marks)

- 12 Prove that the sum of the squares of two consecutive odd numbers is always 2 more than a multiple of 8
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~__ (Total for question 12 is 2 marks)



13 Prove that the difference between the squares of any 2 consecutive integers is equal to the sum of these
integers. ——————
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(Total for question 13 is 3 marks)

14  Prove algebraically that the sums of the squares of any 2 consecutive even number is always 4 more
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